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Abstract. A new expression is given for the long time diffusion coefficient D,(k) of charged 
interacting colloidal spheres in suspension, as a function of the wavenumber k ,  near k = k,, 
where the static structure factor has a maximum. The expression is based on a physical 
analogy between a mode description of the behaviour of atomic fluids (as observe din neutron 
scattering) and of colloids (as observed in light scattering). Use of this expresssion in 
conjunction with a hard-sphere model yields good agreement with extant data on colloids. 

The intermediate scattering function F(k,  t )  , the spatial Fourier transform of the density- 
density correlation function of monodisperse colloidal spheres in suspension as 
measured by light scattering, can be represented reasonably well by the sum of two 
simple exponential decays respectively defining a short time and a long time collective 
diffusion process [l-51. The short time behaviour of F(k, t )  is for times tB < t < tI 

F(k ,  t )  = S(k)  exp( -Deff(k)k2t) (1) 

F(k, t )  - exp(-DL(k)k2t) (2) 

while for long times t > tI 

with Deff(k)  and DL(k)  the short and long time diffusion coefficients and S(k)  = F(k,  0) 
the static structure factor of the particles, which characterises their spatial arrangement. 
The short time diffusion coefficient Deff(k) as a function of the wavenumber k of the 
density (concentration) fluctuation is well understood. In the case, considered in this 
Letter, of dilute suspensions of charged particles that interact strongly through long- 
range repulsive electrostatic forces, but where hydrodynamic interactions may be 
neglected [5-71 

Deff(4 = D O / W  (3) 
where Do is the diffusion coefficient of a colloidal particle at infinite dilution due to 
Brownian motion. The time interval for which equation (1) is valid is large enough that 
Brownian motion (represented by Do in (3)) has established itself for a colloidal particle 
( t  > tB)  in an external mean field exerted by the other particles (represented by S ( k )  in 
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(3)). However, the times t in (1) are short enough that no significant displacements of 
the individual colloidal particles with respect to each other have occurred ( t  < t I ) .  
Equation (3) has been well verified by light scattering experiments [2,3, 81. 

The long time behaviour of F(k,  t )  has hitherto not been fully understood. Attempts 
by, among others, Felderhof and Jones [9] and Hess and Klein [ 101 have led to promising 
results, but no simple formula (like (3) for the short time behaviour) has emerged so far 
that would form a basis for a quantitative comparison with experiment. 

Exploiting an analogy between the long time behaviours of F(k, t )  for dense atomic 
fluids and suspensions of interacting colloids, a new formula is obtained here for the long 
time diffusion coefficient DL(k)  in colloidal suspensions. This approach incorporates a 
simple physical description of the diffusion process and suggests moreover a relation 
between Def f (k )  and DL(k)  that appears to agree with experiment. (The relation between 
this treatment and other analogies [5-7, 111 between the dynamics of atoms and colloids 
will be discussed elsewhere [12]). Both systems exhibit iiiteracting diffusive behaviour 
over times spanning many collisions. The main difference is that, between collisions, 
atoms move ballistically whereas colloidal particles undergo Brownian diffusion. 

We first discuss the atomic fluid. The long time behaviour of F(k,  t )  in dense atomic 
fluids for a-’ < k < l E 1 ,  which includes k = k ,  = 2n/a  and for t > t E  is, in a hard sphere 
model of the fluid with particles of diameter a, number density n ,  mean free path IE and 
mean free time tE, given by [ 13-15] 

F(k,  t )  - exp( - D , ( k ) k 2 t )  (4) 

where the long time diffusion coefficient D,(k) as a function of k is approximately given 
by 

DL(k)  = ~ ( k ) / S ( k )  ( 5 )  

D ( k )  = D B d ( k a ) / X  (6) 

with 

Here D B  = 0.216 (kBT/m)lI2(na2)-l is the Boltzmann self-diffusion coefficient (with kB 
Boltzmann’s constant, T the temperature and m the mass of the particles) and x = g(a) 
the radial distribution function g(r )  at contact r = a. Physically, (6) decomposes the 
diffusion process in the fluid in two parts: DE = LIB/% is the high-density (Enskog) 
self-diffusion coefficient where x increases the collision frequency in a dense fluid as 
compared to a dilute gas, and d ( k a )  incorporates the collisional transfer of momentum 
and energy at collision. Because of this transfer, the diffusion process is slowed down 
( d ( k o )  < 1) when the wavelength A of a density fluctuation is near 20  ( k a  = x) and 
enhanced ( d ( k a )  > 1) when A = a(ka = 2n). To a good degree of approximation 
d(ka)  = (1 - jo(ka) + 2j2(ka))-’  where j,(ka) is the spherical Bessel function of order 
n. D(k)  can be considered as a ‘dressed’ diffusion coefficient consisting of the ‘bare’ 
diffusion coefficient DB multiplied by d(ka)/X.  It has been shown before that (4-6) 
describe the spectra observed in neutron scattering experiments in helium, neon, argon, 
krypton and rubidium for k = k ,  very well [ 151, 

In the analogy used here, the colloidal particles are replaced by hard spheres and the 
long time diffusion coefficient DL(k)  for the colloidal suspension is also given by (5) and 
(6) with DB being replaced by Do,  the diffusion coefficient of a colloidal particle at 
infinite dilution, 

DL(k)  = D O d ( k 4 / W X .  (7) 
Comparing (3) and (7) we now see that the short and long time diffusion coefficients 
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Figure 1. Reduced inverse diffusion coefficients Di l (k ) /D , '  (open circles) and 
DLi (k)/D,'  (closed circles) as a function of k for three solutions of polystyrene spheres in 
water ( ( a )  Pusey [l]; (b )  Dalberg er a1 [2]; (c) Grdner and Lehman [3]). The full curves are 
DLl(k) /Di '  (cf equation ( 7 ) ) ,  the broken curves are D;i(k) /Di '  = S(k)  (cf equation (3)) 
and the chained horizontal lines are D;'/DO' = x (cf equation (9)) for equivalent hard 
sphere fluids with U = 310 nm ( a ) ,  296 nm ( b ) ,  343 nm (c), andna3 = 0.59 ( a ) ,  0.65 (b )  0.82 
(c). The horizontal lines at height 1 represent free Brownian motion. The data points for 
D;I(k)/D;' in (a) and (b)  and k < 1.2 10' m-' have not been corrected for incoherent 
scattering, except for one point [5] (cross in ( a ) ) .  

differ by the factor d(ka) /X ,  which, qualitatively, can be said to describe the structural 
relaxation of a particle in its 'cage' of near neighbours. 

Figure 1 shows three sets of experimental data for short and long time diffusion 
coefficients that were analysed in terms of the analogy developed above. The required 
hard-sphere diameters CT and number densities n were determined (as in [15] for atomic 
fluids) by fitting the experimentally observed S(k)  to a hard sphere S(k) .  Since for hard 
spheres S(k)  is a function of k a  and no3 only, a and II are obtained from these best fits. 
The resulting values of n agree with independent experimental estimates and x = x(no3) 
is obtained from the hard-sphere equation of state. 

The fitted hard-sphere structure factors are shown by broken lines in figure 1. The 
solid lines show values of D,/D,(k)  predicted by (7). Overall, agreement between 
experiment and theory is surprisingly good. The deviations in figures 1(a) and (6 )  
between the theoretical and experimental values of D,(k)  seen at small k are most likely 
due to the appreciable polydispersity [5]  of the colloidal particles used in the experiments. 
For, when S(k)  becomes very small ( k  @ k,) the experimentally measured F(k, t )  is 
increasingly dominated by the slowly decaying (incoherent) self-intermediate scattering 
function F,(k, t )  given by (8) and (9) below. The reason that such effects did not show 
up in the experiments of figure l(c) is that a less polydisperse sample was used; note, 
however, that large corrections for multiple scattering were necessary in this experiment. 
To understand the long time diffusion coefficient D,(k) given by (7) for large k ,  one 
notices that the diffusion process will approach a self-diffusion process, where S(k)  = 
d(ko)  = 1 and F(k,  t )  approaches F,(k, t )  given for long times t > t I ,  by 

Here D ,  is the self-diffusion coefficient of a tagged colloidal particle, i.e. 

Thus, for increasing k > k,, D,(k)  will approach D, ,  i.e., the full curves DL1(k)/DO1 

F , (k ,  t )  - exp( - D , k 2 t ) .  (8) 

D ,  = D d x .  (9) 
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will approach the chained curves D;l/D;' = x in figure 1. This approach is oscillatory, 
due to the oscillations in S(k) and d(ka)  [13]. A similar oscillating behaviour for k > k,  
of F(k, t) around F,(k, t) has been observed by Skold et QZ in liquid Ar, many years 
ago [16]. 

We further remark that the long time diffusion process at intermediate k - k,  is due 
to a (slow) structural relaxation, both in atomic fluids and in charged colloids. For atomic 
fluids, this has been discussed extensively before by two of us [13,15], while for colloids 
it has been mentioned by Hess and Klein [lo]. In spite of the different language used in 
these two discussions the basic phenomenon is the same: while we use an extended heat 
mode, that behaves like a self-diffusion mode, Hess and Klein use a two viscoelastic 
mode description. As Kirkpatrick has shown [14] the two descriptions are equivalent 
when k - k,. Of course, away from k - k,  the two approaches lead to entirely different 
results. Finally, we note that the semi-quantitative analogy between charged colloids 
and atomic fluids via a hard-sphere model fluid is remarkable, in view of the absence of 
any adjustable parameters other than (realistic) hard-sphere diameters to characterise 
the interaction size of the particles and in view of the huge scaling factors between 
the two systems, namely, a diameter ratio of about 800 and an inverse self-diffusion 
coefficient ratio of about 400 leading to time scale ratios of the order of lo9. This will be 
discussed more extensively elsewhere [ 121. 
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